Development of New Reactivators of Tabun Inhibited Acetylcholinesterase and the Evaluation of Their Efficacy by in Vitro and in Vivo Methods

نویسندگان

  • Jiri Kassa
  • Jana Karasova
  • Jiri Bajgar
  • Jiri Cabal
  • Rudolf Stetina
  • Josef Fusek
چکیده

Tabun (O-ethyl-N,N-dimethyl phosphoramidocyanidate) belongs to highly toxic organophosphorus compounds misused as chemical warfare agents for military as well as terroristic purposes. It differs from other highly toxic organophosphates by its chemical structure and by the fact that tabun-inhibited acetylcholinesterase is extraordinarily difficult to reactivate. The antidotal treatment of tabun acute poisonings still represents a serious problem and the development of new, more effective AChE reactivators to achieve the satisfactorily effective antidotal treatment of acute poisonings with tabun still represents very important goal. Since 2003, we have prepared around 200 new AChE reactivators. Their potency to reactivate tabun-inhibited acetylcholinesterase has been subsequently evaluated using our in vitro screening test. Afterwards, promising compounds were selected and kinetic parameters and reactivation constants were determined. Then, the best reactivators were subjected to the in vivo studies (toxicity test, the evaluation of therapeutical, reactivating and neuroprotective efficacy). According to the results obtained, all new oximes tested in vivo (K027, K048, K074, K075) were found to be relatively effective to eliminate acute lethal toxic effects in tabun poisoned mice and reactivate tabun-inhibited acetylcholinesterase in rats poisoned with tabun. In addition, newly developed oximes (K027, K048, K074, K075) combined with atropine seem to be sufficiently effective antidotes for a significant decrease in tabun-induced neurotoxicity in the case of sublethal poisonings of rats although they are not able to eliminate tabun-induced neurotoxicity completely. Our results also confirm that the reactivating efficacy of oximes evaluated by the methods in vitro correlates not only with the potency of oximes in reactivating tabun-inhibited acetylcholinesterase in vivo but also with the ability of oximes to protect rats poisoned with supralethal doses of tabun.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

Docking Studies, Synthesis, and In-vitro Evaluation of Novel Oximes Based on Nitrones as Reactivators of Inhibited Acetylcholinesterase

Acetylcholinesterase has important role in synaptic cleft. It breaks down the acetylcholineatcholinergic synapsesand terminates the cholinergic effects. Some chemical agents likeorganophosphorus compounds (OPCs) including nerve agents and pesticides react withacetylcholinesteraseirreversibly. They inhibit normal biological enzyme action and resultin accumulation of acetylcholineand show toxic e...

متن کامل

Synthesis of the three monopyridinium oximes and evaluation of their potency to reactivate acetylcholinesterase inhibited by nerve agents

Three potential reactivators of nerve agents-inhibited acetylcholinesterase: 2-[(hydroxyimino)phenylmethyl]-1-methylpyridinium iodide 3a, 2-[(hydroxyimino)pyridin-2ylmethyl]-1-methylpyridinium iodide 3b and 2-[(1-hydroxyimino) ethyl]-1-methylpyridinium iodide 3c were synthesized. Their reactivation potency was examined using a standard in vitro reactivation test. A rat brain homogenate was used...

متن کامل

Prediction of a new broad-spectrum reactivator capable of reactivating acetylcholinesterase inhibited by nerve agents

A methodology combining molecular structure represented by fragments, and artificial neural network (ANN) was applied for the prediction of a new acetylcholinesterase (AChE; EC 3.1.1.7) reactivator. We searched for a new structure of the AChE reactivator with the capability of reactivating AChE inhibited by almost all actual nerve agents. For this purpose, we have tested in vitro seventeen pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008